On maximizing a monotone k-submodular function subject to a matroid constraint
نویسنده
چکیده
A k-submodular function is an extension of a submodular function in that its input is given by k disjoint subsets instead of a single subset. For unconstrained nonnegative ksubmodular maximization, Ward and Živný proposed a constant-factor approximation algorithm, which was improved by the recent work of Iwata, Tanigawa and Yoshida presenting a 1/2-approximation algorithm. Iwata et al. also provided a k/(2k − 1)approximation algorithm for monotone k-submodular maximization and proved that its approximation ratio is asymptotically tight. More recently, Ohsaka and Yoshida proposed constant-factor algorithms for monotone k-submodular maximization with several size constraints. However, while submodular maximization with various constraints has been extensively studied, no approximation algorithm has been developed for constrained k-submodular maximization, except for the case of size constraints. In this paper, we prove that a greedy algorithm outputs a 1/2-approximate solution for monotone k-submodular maximization with a matroid constraint. The algorithm runs in O(M |E|(MO+kEO)) time, where M is the size of a maximal optimal solution, |E| is the size of the ground set, and MO,EO represent the time for the membership oracle of the matroid and the evaluation oracle of the k-submodular function, respectively.
منابع مشابه
Maximizing Nonmonotone Submodular Functions under Matroid or Knapsack Constraints
Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...
متن کاملMaximizing Non-monotone Submodular Functions under Matroid and Knapsack Constraints
Submodular function maximization is a central problem in combinatorial optimization, generalizing many important problems including Max Cut in directed/undirected graphs and in hypergraphs, certain constraint satisfaction problems, maximum entropy sampling, and maximum facility location problems. Unlike submodular minimization, submodular maximization is NP-hard. In this paper, we give the firs...
متن کاملSubmodular Maximization over Multiple Matroids via Generalized Exchange Properties
Submodular-function maximization is a central problem in combinatorial optimization, generalizing many important NP-hard problems including Max Cut in digraphs, graphs and hypergraphs, certain constraint satisfaction problems, maximum-entropy sampling, and maximum facility-location problems. Our main result is that for any k ≥ 2 and any ε > 0, there is a natural local-search algorithm which has...
متن کاملStreaming Algorithms for Submodular Function Maximization
We consider the problem of maximizing a nonnegative submodular set function f : 2N → R+ subject to a p-matchoid constraint in the single-pass streaming setting. Previous work in this context has considered streaming algorithms for modular functions and monotone submodular functions. The main result is for submodular functions that are non-monotone. We describe deterministic and randomized algor...
متن کاملConstrained Monotone Function Maximization and the Supermodular Degree
The problem of maximizing a constrained monotone set function has many practical applications and generalizes many combinatorial problems such as k-Coverage, Max-SAT, Set Packing, Maximum Independent Set and Welfare Maximization. Unfortunately, it is generally not possible to maximize a monotone set function up to an acceptable approximation ratio, even subject to simple constraints. One highly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Optimization
دوره 23 شماره
صفحات -
تاریخ انتشار 2017